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Abstract 
The climate of the earth has started to change as a result of human 
activity, and further changes in the means and variances of meteorological 
and climatological parameters have been predicted. Effects of both 
natural and anthropogenic climatic variability have also been docu-
mented in many biological species at all trophic levels. Seabirds con-
stitute a group of marine top-predators with life-history characteristics 
that make them especially vulnerable for environmental changes: they are 
comparatively long-lived and have low fecundity. This means that even 
small changes in adult survival can drastically reduce life-time reproduc-
tive success. In the analyses presented in this thesis, I attempted to go 
beyond simply enumerating the species affected. If there are any charac-
teristics in the ecology or life history of species that predisposes them to 
respond more strongly to climate variability than other species, those 
characters can only be revealed by interspecific analyses. 

The articles that are part of this thesis include one theoretical and two 
empirical papers, the first of which is a case study carried out at a seabird 
colony in the Barents Sea, and the latter of which is a comparative 
analysis of the data available on all North Atlantic seabirds. The theo-
retical paper contributes to the methodology of phylogenetic-
comparative analyses, which is the tool used by biologists to reveal 
lawfulness in nature. 

The case study from Hornøya is the first to document an effect of 
climatic variability on the adult survival of North Atlantic seabirds. 
Especially alarming was the clearly negative effect of warm seawater 
conditions, a situation that will become more common in the future. 

Effects of climate were also widespread in the interspecific data base 
analysed. While climatic responsiveness in population size was not 
accounted for by any of the explanatory variables investigated, compar-
ative analyses showed that responsiveness of offspring production and 
adult survival to climatic variability exhibit patterns that are compatible 
with life-history theory: responsiveness tended to be higher in species 
with higher fecundity and/or lower survival. The bearings of these 
findings and proposals for future research are discussed. 
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Introduction 
 

nimal populations are affected 
by climate. That observation is 

neither new nor controversial (Alheit 
and Hagen 1997; Ottersen et al. 
2001; Walther et al. 2002). Under-
standing the causal pathways of this 
relation is quite a different matter, 
however. Climatic effects can be 
direct, i.e. caused by adverse weather 
conditions, or indirect, for instance 
mediated through the food chain. In 
the latter case they can be more or less 
immediate or lagged by several years. 
They can act on distribution or beha-
viour as well as morphology or life 
history (Ahas 1999; Post et al. 1999b; 
Post and Stenseth 1999; Walther et 
al. 2002). It is the last effects, the 
ones that climate exerts on the life 
history of species, that are relevant 
for whether the populations affected 
increase or decrease over time, and 
that are the focus of this thesis. 

Background 

Seabirds are comparatively long-lived 
animals: maximum ages of up to 60 
years are documented (Diomedea epo-
morpha; Schreiber and Burger 2002a), 
and higher ages certainly occur. The 
corresponding high annual survival 
rates of well above 90% for many 

species, are one of the reasons that 
make this group interesting for stu-
dents of the evolution of life history 
strategies (Jouventin and Mougin 
1981). 

Following George C. Williams’s 
(Williams 1966) refinement of 
David Lack’s (Lack 1947) principle 
of the optimum clutch size, it has 
been realised that the life expectancy 
of birds weighs heavily in their 
reproductive decisions (Goodman 
1974; Wooller et al. 1992; Charles-
worth 1994): the longer-lived a spe-
cies is, the larger is the potential 
future reproduction in comparison 
to any particular actual reproductive 
event, and the more should natural 
selection be expected to favour 
investment in adult survival over 
investment in offspring. In the 
terminology of life-history theory, 
this results in adult survival being 
the life-history trait of seabirds 
which has the highest elasticity, 
where elasticity is a measure of “the 
percentage change in [the popula-
tion increase rate] λ brought about 
by a percentage change in mortality 
[or any other life-history trait]” 
(Stearns 1992:34). 

In many contexts, species are 
placed along a “fast–slow” axis 

 A
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(Bennett and Owens 2002), where 
the “fast” species grow rapidly, 
mature early, produce much off-
spring per breeding bout, and sur-
vive poorly. This extreme has also 
been referred to as a “high repro-
ductive effort” strategy (Owens and 
Bennett 1995). “Slow” or “low 
reproductive effort” species cor-
respondingly grow slowly, mature 
later in life, produce little offspring 
per breeding season, but have long 
reproductive life spans. Compared 
to most other bird taxa, seabirds as 
a group are to be found towards the 
“slower” end of this continuum 
(Weimerskirch 2002), however there 
are also significant differences in 
placement along this axis among 
seabird species (Jouventin and Mou-
gin 1981; Erikstad et al. 1998). Both 
aspects are relevant when we look at 
population trends in seabird species: 
• That they are all comparatively 

long-lived, implies that already 
small changes in their annual adult 
survival rates will have unusually 
large effects on the life-time repro-
ductive success and thus, ultimate-
ly, on the survival of the popula-
tions, and species as a whole. 

• That there is considerable varia-
tion among seabirds on the other 
hand, means that the life-history 
of a seabird species may be used 
as a cue as to how vulnerable the 
species is in the face of changing 
environmental conditions. 

Seabirds live in, and are adapted to, 
highly stochastic environments. It is 
thus not the variability of environ-
mental conditions per se that is of 
concern for long-term population 
trends. Rather it is changes in the 
variances or the long-term means of 
these conditions. Different models 
have made substantially diverging 
predictions as to how the different 
strategies within the long-lived spec-
tre of life histories will respond to 
changes in the mean or variance of 
environmental conditions (Ricklefs 
1990; Erikstad et al. 1998), and 
empirical evidence is still scarce. 

One way to quantify environ-
mental fluctuations is by means of 
climatic parameters. Climate effects 
seabirds directly, mainly through 
temperature, precipitation and wind 
during the breeding season, and by 
heavy winds outside the breeding 
season (Finney et al. 1999; Schreiber 
2002; Durant et al. 2004). Most so-
called seabird wrecks have been 
associated with winter storms (Hud-
son 1985). However, there is evi-
dence that indirect climate effects 
are still more important. Sea surface 
temperature, wind direction and the 
speed of oceanic currents are known 
to influence the abundance and dis-
tribution of seabird prey (Fromentin 
and Planque 1996; Heath et al. 1999; 
Stiansen et al. 2002). The most well-
known effects of climate on sea-
birds, the El Niño years at the 
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western coast of South America 
where breeding failures may be total 
(Guerra et al. 1988; Mellink 2000) 
and adult survival severely impaired 
(Schreiber and Schreiber 1984; 
Massey et al. 1992), are caused by a 
break-down of the Peruvian upwell-
ing system, which in turn is a con-
sequence of a shift in climatic and 
oceanographic processes (Barber and 
Chavez 1983; Cane 1983; Philander 
1990). 

Global climate change is pre-
dicted to affect both means and 
variances of a variety of climatic 
parameters (IPCC 2001). In will not 
be possible to predict the response 
of animal populations to those 
changes unless the responses to the 
naturally occurring fluctuations are 
better understood. Although the 
effect of the El Niño (and Southern 
Oscillation; Trenberth 1984; Philan-
der 1990) extends well beyond the 
South Pacific (La Cock 1986; Ainley 
1990; Crawford et al. 2003), the cli-
mate to which North Atlantic 
seabirds are exposed, is governed by 
another large-scale oscillation 
pattern: 

The North Atlantic Oscillation 
(NAO) as a phenomenon has been 
named exactly eighty years ago 
(Walker 1924). It describes a so-
called teleconnection across the 
North Atlantic Ocean, i.e. the fact 
that meteorological parameters on 
both sides of the North Atlantic are 

highly correlated which each other, 
a pattern aptly termed “seesaw” 
(van Loon and Rogers 1978) because 
temperatures go up on one side 
when they go down on the other 
and vice versa. Many more parame-
ters than air temperature have been 
show to correlate with the NAO, 
such as sea surface temperature 
(SST) and wind speed (Fig. 1; 
Hurrell et al. 2003; Hurrell and Dick-
son 2004). However, those correla-
tions are not simply expressed by one 
number because they vary in well-
defined spatial patterns (which is 
exactly what makes them a seesaw). 

NAO conditions are now con-
veniently expressed by the NAO 
index (Fig. 2; Hurrell 1995). Because 
the NAO is a fluctuation of atmo-
spheric mass between the Icelandic 
low-pressure centre and the Azores 
high-pressure centre, its classical 
definition was the normalised diffe-
rence in sea level pressure between 
Stykkishólmur (Iceland) and Ponta 
Delgada (Açores). In NAO+ winters 
(Fig. 1a), the Icelandic low and the 
Azores high are strong and canalise 
heavy westerly winds towards nor-
thern Europe, resulting in relatively 
warm and wet conditions. The Nor-
wegian Atlantic Current is speeded 
up and transports warm water mas-
ses and zooplankton into the Barents 
Sea. Winters in the Mediterranean 
are cold and dry. In NAO– winters 
(Fig. 1b), the westerlies are weakened
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   (a) NAO+

   (b) NAO–
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Fig. 1 (opposite page). The North Atlantic Oscillation. Schematic illustration of the main cli-
matological and oceanographic features of typical NAO+ and NAO– years. © 2000, Martin Vis- 
 beck. Reproduced from http://www.ldeo.columbia.edu/NAO with M. Visbeck’s kind permission. 

 
 

and have more southerly trajecto-
ries, leading to warm and wet condi-
tions in southern Europe and severe 
winters in northern Europe. The 
NAO is mainly a winter phenom-
enon, that is to say that the correla-
tions mentioned are strongest during 
the months December–February. 

As can be seen from this short, 
and not exhaustive, list, many of the 

parameters correlated with the NAO 
are utterly relevant for animal popu-
lations in general, and marine ones 
in particular (reviews in Ottersen et 
al. 2001; Stenseth et al. 2002; Otter-
sen et al. 2004). Nevertheless, it was 
in terrestrial  habitats that many of 
the biological effects of the NAO 
have been described first, such as 
influences on flowering time of 
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Fig. 2. Oscillations of the North Atlantic Oscillation index from 1900 to 2003. The last 15 
years have seen unusually many NAO+ years. NAO index values can be measured at any 
point in time or calculated for any period of time. The index shown here is the extended 
winter principal-component based NAO (i.e., the mean for the period December previous 
year–March). This is the index used in this thesis, because correlations between NAO and 
meteorological phenomena is strongest in winter. Furthermore, principal-component based 
indices better represent areas far removed from the stations used to measure station-based 
 NAO indices. However, all different measures of NAO are strongly correlated with each other.
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vascular plants or the sex ratio and 
birth weight of vertebrates (Post et 
al. 1999a; Post and Stenseth 1999). 
However, also effects on marine 
plankton (Fromentin and Planque 
1996; Heath et al. 1999), fish recruit-
ment rates and stock biomass are by 
now well-documented (Stiansen et 
al. 2002; Hjermann et al. 2004), both 
of which effect seabirds through the 
food chain. 

What also might have become 
clear, is that one will not expect 
animals to respond to the NAO per 
se, as it is defined in terms of air 
pressure differences. It is the meteo-
rological or oceanographic patterns 
correlated to NAO which affect ani-
mals. As such, the NAO is not more 
than “a proxy for a variety of cli-
matic processes” (Ottersen et al. 
2001:2). However, it is one of the 
best proxies that is currently at hand. 
Using it, one has to bear in mind 
that its correlations to other phe-
nomena vary in both space and time. 

32 out of roughly 330 seabird spe-
cies recognised are endangered or 
critically endangered, a further 60 
are vulnerable (Schreiber and Burger 
2002b). The response of seabirds to 
climatic fluctuations, both naturally 
occurring and anthropogenically in-
duced ones, is therefore of special 
concern. Only an understanding of 
which seabirds are expected to be 
especially vulnerable and by what 
factors and in which life-history trait 

they will be affected, will enable 
conservation biologists to conserve 
threatened species from extinction, 
and to prevent others from becom-
ing threatened. 

Limiting the magnitude of global 
change by reduction of CO2 emis-
sions should still have priority over 
all other measures (the conundrum 
of why so many scientists, including 
many at the Polar “Environmental” 
Centre, take a car to job is only 
mentioned in passing). However, 
also in the short run, conservation 
measures can relieve species that are 
threatened by climatic change, even 
if it takes considerably longer time to 
improve this prime extinction threat. 
Possible examples are albatrosses 
which suffer from long-line fishing 
(Inchausti and Weimerskirch 2001) 
as well as ocean warming (Weimers-
kirch et al. 2003), or bird popula-
tions negatively affected by intro-
duced predator species (Pascal et al. 
2004). Concentrating efforts at re-
ducing those factors that can be 
influenced in the short term (such as 
fishing techniques or predator eradi-
cation), will have positive effects on 
threatened populations, even though 
the climatic conditions themselves can-
not be influenced in the short term. 

It is the wish to contribute to a 
better understanding of the mechan-
isms underlying population respon-
ses to climatic fluctuations, that has 
motivated these studies. 
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Objectives 

Having thus sketched the frame-
work of my studies – life-history 
theory and climatic variability – I 
will now explicate the aims of my 
analyses. 
• Climate is known to affect adult 

survival of seabirds in the South 
Pacific and some other oceanic 
regions. In the North Atlantic, 
effects of climate have so far been 
only documented on other life-
history traits such as reproduc-
tion. Is this absence of docu-
mented climate effects on survival 
in North Atlantic seabirds a real 
phenomenon, or is it caused by 
the fact that no-one has looked 
for it earlier? 

• Theory suggests close relation-
ships between the life-history 
strategies of species and their 
response to changes in environ-
mental conditions. Are there any 
corresponding patterns in popula-
tion dynamics of seabirds that 
apply across species? In other 
words, can the life history of 
species be used to predict their 
responsiveness to climate change? 

• Which parameter is most infor-
mative as a shortcut to climatic 
variability? The NAO is not by 
itself relevant to seabirds, how-
ever other parameters such as SST 
require knowledge of where the 
seabirds are at any given time. 

What does this have to say for the 
choice of explanatory variables 
for analyses of seabird responses? 

• Given that the main concern is 
lawful generalisations across diffe-
rent seabird species, how is the 
evidence available best analysed? 
More specific, which methodol-
ogy can be used to address inter-
specific questions were the environ-
mental variable is a continuous 
one (e.g., meteorological para-
meters) and the biological variable 
a discrete one (e.g., clutch size)? 

The questions posed are both fac-
tual and methodological. Corre-
spondingly, the papers addressing 
them are both empirical (Papers II 
and III) and theoretical (Paper I, 
and to a certain degree, Paper III). 
One of the methodological aspects, 
related to interspecific analyses, may 
need some more explanation: 

The Comparative Method 
in Ecology 

Ecology, just as biology as a whole 
(Mayr 1988), is a science that encom-
passes both idiographic and nomo-
thetic aspects. Even though a naïve 
reading of Popper (e.g., Popper 
1934, 1944/45) has lead some 
researchers to disparage idiographic 
or historic science as “pseudo-
science”, both branches of enquiry 
are equally important (Ghiselin 
1997) and should ideally comple-
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ment each other (Sandvik 2000). 
Idiographic aspects of ecology are 
for instance the unravelling of the 
trophic, symbiotic or competitive 
relations between certain species, or 
scenarios of how particular commu-
nities have been assembled through 
time. Nomothetic ecology aims at 
finding lawfulness in the living 
world. While the patterns thus re-
vealed would be referred to as laws 
of nature in physics, ecologists nor-
mally prefer to call them rules (such 
as Allen’s rule, Bergmann’s rule, 
Cope’s rule), mainly because they 
are of a probabilistic nature rather 
than being absolute laws. Whatever 
name is chosen, lawfulness does 
exist even in systems as hopelessly 
complex as ecosystems. Deriving 
generalisations across the constitu-
ents of those systems, i.e. species, is 
at the heart of all nomothetic activi-
ties in ecology. 

The method employed in all 
nomothetic activities in biology is 
called the comparative method. In 
short, any interspecific study, i.e. 
any investigation including more 
than one species, addresses a com-
parative question. To make infer-
ences from interspecific datasets, 
however, one has to realise that 
species are neither biologically nor 
statistically independent of each 
other. This fact is by now acknow-
ledged as a triviality as far as the 
independence of individual organ-

isms is concerned: including several 
measurements of the same individ-
ual in an intraspecific analysis vio-
lates assumptions of most standard 
statistical tests and should be 
avoided or corrected for (Machlis et 
al. 1985). That the same is valid for 
species, has been known for a long 
time (at least since 1857, see Ridley 
1992). However, methods to deal 
with this situation have not been 
developed before the 1980s (Ridley 
1983; Felsenstein 1985). 

Figure 3 illustrates what is meant 
by the (in)dependence of species. 
Any statistical test that is carried out 
using single species as data points, 
implicitly “assumes” that the phylo-
genetic relationships of the species 
involved are the ones depicted in 
Figure 3a: an unresolved bush. In 
the real world, phylogenies never are 
unresolved bushes, however. Species 
share certain amounts of their evo-
lutionary history with each other, 
and they do so to differing degrees, 
depending on the time elapsed since 
their most recent common ancestor 
lived (Fig. 3b). Ignoring this can 
have many undesired consequences, 
such as type I errors because an 
overestimation of the sample size, 
or type-II errors because the under-
lying microevolutionary processes 
have been misrepresented (Martins 
and Hansen 1996b). 
Luckily, several methods have been 
proposed that can take account of 
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the phylogenetic relationships be-
tween the species studied (reviewed 
by Martins and Hansen 1996a). A 
common feature of those methods 
is that it is evolutionary events rather 
than species that are considered 
independent data points, and that 
they require knowledge of the 
phylogeny of the species of concern. 
Such tests are therefore referred to as 
phylogenetic-comparative analyses. 

The text raising attention to this 
methodology for a broader audi-
ence, unfortunately received the 
somewhat inappropriate title The 
comparative method in evolutionary 
biology (Harvey and Pagel 1991) – 
“unfortunate” because the compara-
tive method is relevant not only for 
evolutionary biology but for any 
biological discipline which attempts 
answering interspecific hypotheses 
(Ridley 1989). By now, most jour-

nals also in the non-evolutionary 
fields of biology require interspecific 
analyses to be based on phylo-
genetic-comparative methods. This 
list gives an (incomplete) survey of 
the ecological questions that already 
can be addressed phylogenetic-com-
paratively: 
• How can biodiversity be quanti-

fied? (Faith 1994; Owens and 
Bennett 2000; Faith 2002) 

• Have the species of host–parasite 
or mutualistic relations co-speci-
ated? (Page 2003) 

• Which taxa deserve priority in 
conservation? (Moritz 1996) 

• Which ecological requirements 
does a poorly known species in 
need of protection have? (Brooks 
et al. 1992; Jennings et al. 1999) 

• How was an ecological commu-
nity assembled and why by those 
species? (Losos 1996) 

 
 

(a)
 

(b)
 

 
Fig. 3. Not taking phylogeny into account in interspecific analyses amounts at assuming an 
unresolved bush-like “star phylogeny” (a). In reality, species share different amounts of their 
 evolutionary history with each other (b). 
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Table 1. Overview over phylogenetic-comparative methods developed in order to analyse
the correlated evolution of two characters (or of one character and an environmental vari-
able). The tabulation is according to the nature of the variables. The impression that methods
dealing with two variables of the same kind are dominating, is confirmed by Fisher’s exact
 test (p < 0.040). 

 Dependent variable  Environmental 
variable discrete continuous 

discrete 

Ridley 1983, 
Maddison 1990, 

Sillén-Tullberg 1993, 
Pagel 1994, 1997 

Grafen 1989, 1992 

continuous Paper I 

Felsenstein 1985, 
Huey and Bennett 1987, 

Grafen 1989, 1992, 
Lynch 1991 

 

 

• Is the presence or quality of a 
character (i.e., has its evolution 
been) correlated to the environ-
mental conditions faced by the 
species? 

• Is the occurrence or quality of 
two characters correlated? 

The last two kinds of question are 
probably the most frequent ones in 
comparative ecology. The methods 
proposed to answer them are shown 
in Table 1. 

The aim of my studies was to de-
rive lawful generalisations (“rules”) 
of how seabirds respond to chang-
ing climatic conditions (Paper III). 
The questions posed where thus 
interspecific in nature, and required 
a phylogenetic-comparative frame-
work. Furthermore, one of the types 
of questions relevant to my analyses 
could not be dealt with by existing 
methods: as can be seen from Table 

1, no method existed to address 
questions where the environmental 
variable is continuous and the 
species character is a binary or a 
class variable. To fill this gap, was 
another aim of my studies (Paper I). 

Results and Discussion 

As normally methodological issues 
have to be settled first, before 
applying them to data, I start with 
the methodological contributions. 
Paper I outlines my solution to the 
case where an interspecific dataset 
to be analysed consists of an 
continuous explanatory variable and 
a discrete dependent variable. The 
method draws upon methods devel-
oped by Maddison (1990) and Pagel 
(in Harvey and Pagel 1991:94–100) 
for analyses of purely discrete data-
sets. Paper I illustrated the method 
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using a worked and a real example 
taken from the literature. It had 
been my hope to also apply the 
method to the climatological prob-
lems I addressed in the other pa-
pers. However, in Paper III Felsen-
stein’s (1985) independent contrasts 
were more appropriate because all 
variables were continuous. I hope 
that this only means that I have 
postponed application of my meth-
od to my data to a later paper. 

Another methodological finding 
was a way to analyse re-sighting data 
of ringed birds in the presence of 
ring loss. I am not aware that this 
solution has been proposed earlier, 
although Vladimir Grosbois (pers. 
comm.) has found the same solution 
independently of me. Estimates of 
adult survival rates are based on re-
sightings of marked individuals (see 
Paper II for references), and ring 
loss poses therefore a severe prob-
lem. In the case described in Paper 
II, each bird had been ringed with a 
total of two or three rings on each 
leg, one of which was a numbered 
metal ring which is very rarely lost. 
However, upon loss of one of the 
colour rings, a whole series of other 
colour ring combinations is invali-
dated unless one is able to read the 
ring number of the bird in question. 
Excluding all birds belonging to this 
series from the dataset would dra-
matically reduce the sample size of 
such studies (by 63% in one case in 

Paper II). Still, in the absence of 
other methods, this is the only 
defensible thing to do. Birds of the 
same colour ring series which have 
not lost any ring and have been 
observed after a ring loss was stated, 
obviously cannot be the individual 
that lost its ring. Nevertheless, not 
excluding those birds would intro-
duce a systematic error. That is 
because birds that have not been 
observed with complete ring combi-
nations can be either of two things: 
dead or partly ring-less. Birds that 
have been observed with complete 
ring combinations are obviously 
alive. Excluding the former but not 
the latter therefore biases survival 
estimates upwards. 

 The solution proposed must still 
discard all re-sightings of those birds 
after the ring loss, however it allows 
to use them up to (and excluding) 
the year in which the ring loss was 
discovered. The approach presup-
poses knowledge of how the com-
puter program MARK (White 2003) 
works, so I refer to the Methods 
section of Paper II for more details. 
The advantage of the method is that 
many years of observation can be 
retained even for birds that become 
“problematic” at a later time. Con-
sidering the difficulties of obtaining 
sufficient sample sizes for reliable 
estimation, this is a clear improve-
ment over discarding problematic 
birds altogether. 
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As for the empirical aspects of my 
PhD, I analysed one case study of 
seabird survival at a north Norwe-
gian seabird colony, viz. Hornøya 
(Paper II), and a interspecific dataset 
of demographic data of diverse sea-
bird species throughout the North 
Atlantic (Paper III). In both studies 
I found clear evidence of an effect 
of the NAO on the parameters con-
sidered. 

In four of the five species studied 
at Hornøya (common and Brün-
nich’s guillemot Uria aalge and U. 
lomvia, razorbill Alca torda, and 
Atlantic puffin Fratercula arctica), 
the survival model incorporating 
NAO was better, or in one case 
only very nearly as good and just 
about as parsimonious, than any 
models without environmental ex-
planatory variables. Based on know-
ledge of the winter distribution of 
those species, it was also possible to 
test for the effect of another, more 
geographically constrained, climatic 
variables, viz. SSTs. In most species 
SST models were still better than 
NAO models, and the variance in 
survival accounted for by those 
parameters was unexpectedly high 
(13–54%). Given that already small 
changes in survival of these long-
lived species have dramatic effects 
on the life-time reproductive suc-
cess, the large effects of SST are 
alarming. Similar findings have so 
far only been reported from the 

Southern Ocean (Barbraud et al. 
2000; Barbraud and Weimerskirch 
2001, 2003; Jenouvrier et al. 2003) 
and the Pacific (e.g., Jones et al. 
2002). The pattern found in those 
studies and my own is identical: 
adult survival and SST are negatively 
correlated. The prospects for the 
species affected are thus not very 
bright in light of the expected (IPCC 
2001) – and already documented 
(Levitus et al. 2000; Gille 2002) – 
increase in oceanic temperatures. 

In the studies carried out in the 
Southern Ocean, the availability of 
food (krill) was discussed as the main 
cause of this negative correlation 
(Barbraud et al. 2000; Barbraud and 
Weimerskirch 2001, 2003; Jenou-
vrier et al. 2003). This seems likely 
for my system as well, especially 
given recent evidence (Hjermann et 
al. 2004) that warm water conditions 
favours the herring (Clupeus haren-
gus) at the cost of other species 
(especially the capelin Mallotus villo-
sus) which are both more numerous 
(Hjermann et al. 2004) and seem to 
be more easily accessible for sea-
birds (Barrett and Krasnov 1996; 
Barrett 2002). Attempts to corrobo-
rate the effect of prey abundance 
using estimates of the Barents Sea 
stocks, had only very mixed success. 
The effect of prey abundance on 
survival was nearly never significant, 
and did not have high explanatory 
value. The widespread distribution 
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of the seabirds during winter, in 
regions were estimates of the Barents 
Sea stock are not representative for 
prey availability, is likely to be part 
of the reason. 

Also in an interspecific analysis of 
more than 500 previously published 
studies of either population size, 
productivity (chicks fledged) or 
adult survival, the effect of NAO 
was apparent. Because the studies 
used came from the whole North 
Atlantic, I used the coefficient of 
determination (r2) between the NAO 
and the species’ demographic para-
meters as a measure of climatic 
responsiveness. The reason to chose 
r2 rather than the correlation coeffi-
cient itself (r) was that the latter 
varied grossly and seemingly at ran-
dom across the studies used. This is 
in accordance with earlier findings 
that NAO can have highly variable 
effects on animal populations even 
on relatively small geographic scales 
(Mysterud et al. 2000; Sæther et al. 
2003). r2 has the advantage of al-
ways being positive, but still meas-
uring climate effects. 

In approximately 18 out of 38 
species included, an effect of NAO 
on population size was recovered at 
one or several time lags. The same 
applied to offspring production in  
at least 5 out of 22 species, and  
to adult survival in 6 out of 15 
species, It thus seems that responses 

to climate, even in an aggregate 
parameter as population size, are 
anything but exceptional. This is 
especially impressive as most of the 
original studies used were not con-
cerned with climate at all; the effects 
found are thus hardly the con-
sequence of a publication bias. 

In the final step of analysis, the 
attempt was made to explain the 
distribution of responsiveness to cli-
mate across species. The expecta-
tions derived from life-history 
theory were tested on this dataset  
in a truly phylogenetic-comparative 
manner. As far as responsiveness of 
population sizes to climatic variation 
was concerned, the variation in this 
variable could not be explained by 
any of the life-history traits con-
sidered. Responsiveness of chick 
production and of adult survival, on 
the other hand, showed clear pat-
terns in favour of my expectations: 
responsiveness in survival was for 
instance lowest in species at the low 
fecundity end of the life-history 
strategy gradient. This result corrob-
orates the theoretical assumption 
(Schaffer 1974) and empirical find-
ing (Lindén and Møller 1989;  Van-
derWerf 1992) that animals with 
lower fecundity are less prepared 
than higher-fecundity species to 
incur survival costs that may follow 
from reproduction. 
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Table 2. Effect of a reduction in annual adult survival rates by five percentage point in two
different seabird species, the common guillemot (Uria aalge) and the little tern (Sterna albi-
frons). φ is adult survival (as derived from Paper II and Hongell 1989, respectively); RLS is the
reproductive life span measured in years, approximated (following Botkin and Miller 1974) as
 0.5 · (1 + φ) / (1 – φ). 

 Common guillemot   Little tern  Conditions 

φ RLS φ RLS 

“Normal” 0.96 24.5 0.77 3.8 

Changed 0.91 10.6 0.72 3.1 

Difference 0.05 13.9 0.05 0.8 

Decrease 5% 57% 6% 20% 

 
 
 
However, this finding does not in 

itself reveal much about the vulnera-
bility of the species concerned. A 
decrease in adult survival of five 
percentage points is much more 
dramatic for a bird with an annual 
rate of 96% (e.g. the common guil-
lemot; Paper II) than for a bird with 
an annual survival rate of 77% (e.g. 
a little tern Sterna albifrons; Hongell 
1989). Table 2 explicates what this 
difference means in terms of the 
species’ reproductive life spans: It is 
more than halved in the guillemot 
and only reduced by a fifth in the 
tern. 

In order to predict vulnerability of 
a species, the effect on survival has 
consequently to be scaled in some 
way for the effect a given change 
exerts on the reproductive life span 
and thus life-time reproductive suc-
cess of the species. This is a reward-
ing topic for future research. 

Conclusion and Outlook 

Both the case study (Paper II) and 
the comparative analysis (Paper III) 
have revealed the prevalent exist-
ence of climate effects in seabird 
population size and/or demogra-
phic parameters. The effects of 
reduced survival which Table 2 
exemplifies, are in the order of 
magnitude which have been docu-
mented at Hornøya, and they are to 
a large extent attributable to warm 
sea water conditions (Paper II), a 
situation that will occur more fre-
quently in the future. Even though 
the longest-lived seabirds respond 
the least to climatic variability (Pa-
per III), their responses may never-
theless be more dramatic. Whether 
this indeed is the case, will be an 
important question to be addressed 
by future studies. This requires 
some investigations into how the 
different parameters should be 
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scaled in order to make effects com-
parable across different species. 

There are several other fields that 
are promising for future research: 
• As mentioned earlier, the signs of 

correlations with climate vary un-
predictably. This only means that 
the cause has not yet been identi-
fied, however. In an elegant study 
on red deer (Cervus elaphus), Mys-
terud et al. 2000 (2000) were able 
to identify the reason for opposite 
relationships of sex ratio with 
NAO on small geographical scales: 
the key factor was altitude, because 
the precipitation, the quantity of 
which is influenced by the NAO, 
falls as rain below c. 400 m and as 
snow above. It is possible that a 
similar key factor governs respon-
ses in marine systems. Identifying 
it would be a major advance. Part 
of the solution may be to take a 
closer look at SSTs rather than 
climatic index values. I have done 
so successfully in Paper II, how-
ever in a comparative context (Pa-
per III) this approach is compli-
cated by incomplete knowledge of 
where seabirds are outside the 
breeding season, i.e. most of the 
year. 

• It would be most rewarding to 
compare other oceans with the 
North Atlantic. Paper III was 
confined to the North Atlantic 
because NAO was used as a short-
cut to climatic conditions. A prob-

lem with interoceanic comparisons 
is that different climate indices are 
not comparable across different 
oceans. Also here, SSTs may be a 
promising parameter to use. 

• A necessary condition for phylo-
genetic-comparative analyses is the 
knowledge of the phylogenies of 
the species of interest. In com-
parative analyses of seabird it is a 
great impediment that the phylo-
geny of the terns (Sterninae) is as 
yet entirely unknown. This taxon 
encompasses 45 species, some of 
which are quite intensively studied, 
however they had to be repre-
sented by an unresolved bush in 
my analyses, so that much infor-
mation was lost. So please, tern 
specialists: reconstruct the phylo-
genetic tree of this group! 

• Density dependence has not been 
taken account of in my studies. 
However, it has been argued on 
theoretical grounds (Chan and 
Stenseth 2002; Ottersen et al. 
2004) that climate and density 
dependence do not need to affect 
population sizes in an additive 
manner, it may well be density 
dependence, rather than popula-
tion size itself, which is the para-
meter affected by climate. Recent 
empirical evidence has verified the 
existence of density-dependent 
effects of climate (Barbraud and 
Weimerskirch 2003; Sæther et al. 
in press). 
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• The same applies to nonlinear 
relationships: most studies – mine 
included – have simply assumed 
relations between climate and ecol-
ogical parameters to be linear. 
That this does not have to be the 
case, has been impressively demon-
strated by Mysterud et al. (2001) 
and by Ellis and Post (2004). 

• Finally, in addition to focusing on 
changes in means of meteorologi-
cal parameters, more research on 
the effect of changing variances is 
clearly needed. Changes in varian-
ces can have at least as important 
effects on population dynamics as 
changes in means (Mearns et al. 
1997; Erikstad et al. 1998; Sæther 
et al. in press). 

As usual, the number of questions 
seems to grow more rapidly than 
the number of answers. I choose to 
interpret this as a good sign: we 
have started unravelling something 
– the findings might be somewhat 
provisional yet, but the results show 
clearly that there are patterns waiting 
for an explanation. Obviously other 
interpretations are conceivable for 
some of the findings. However, 
given that nobody had been looking 
for those patterns previously at this 
scale and interspecifically, exposing 
them has certainly been an impor-
tant step. 
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Illustration (source, Haeckel 1874): 
One of the first truly phylogenetic trees, Haeckel’s Stammbaum des Menschen. 
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Analysing The Correlated Evolution 
of Discrete and Continuous Traits: 

A Phylogenetic Comparative Method 

Hanno Sandvik 

Abstract   A phylogenetically informed method for the analysis of 
interspecific data with a continuous independent variable and a 
discrete dependent variable is proposed. The test compares two 
hypotheses built upon a continuous-time Markov model of evolu-
tion. The first (null) hypothesis assumes that the transition rates of 
the discrete character are dependent on branch lengths. The alter-
native hypothesis assumes that the transition rates are a function of 
the amounts of change in the continuous variable. Using likelihood 
ratio tests or Akaike’s Information Criterion it can be decided which 
model is better at explaining the data. The evolutionary and 
statistical assumptions of the method are made explicit and 
compared to other approaches. 

Keywords   Binary characters, categorical characters, comparative 
analysis, continuous characters, maximum likelihood, phylogeny 

H. Sandvik, Dept of Biology, Univ. of Tromsø, 9037 Tromsø, Norway; and Norwegian 
Institute for Nature Research (NINA). E-mail: hanno@evol.no. 

It has become standard, at least in 
most of the well-reputed biological 
journals, to require that interspecific 
analyses be carried out by taking 
into account the phylogeny of the 
species investigated. A diversity of 
methods has been proposed, which 
have been reviewed by Harvey and 

Pagel (1991) and Martins and Han-
sen (1996). 

The methods have in common 
that they can be used to answer 
interspecific questions such as: do 
two characters show correlated 
evolution across species, or is the 
evolution of one character cor-
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related to the environmental con-
ditions faced by the species. A major 
distinction between the various 
phylogenetic comparative methods 
is according to the nature of the 
characters analysed: some models 
deal with pairs of continuous char-
acters, while others are designed to 
process pairs of discrete, i.e. binary 
(0 vs. 1) or multi-state (e.g. 0, 1, 2 
etc.), characters. However, few 
methods allow to deal with one con-
tinuous and one discrete trait 
(Grafen 1989; Lynch 1991), and in 
none of these methods can the con-
tinuous character be the indepen-
dent variable. 

Obviously, comparative biology is 
in need of a method that can deal 
with the latter situation. In this 
paper, I propose a solution to this 
problem. It can be applied to 
address a wide range of questions in 
all fields of biology, such as whether 
a certain trait (absence/presence of 
secondary sexual characters, endo- 
vs. ectothermy, etc.) or life-styles 
(parasitic vs. free-living, marine vs. 
freshwater, etc.) is correlated with 
another trait (size, basal metabolic 
rate, range, etc.) or environmental 
variable (temperature, precipitation, 
etc.). 

After having explained the 
approach in detail and by using an 
example tree, I will make explicit its 
assumptions and mention some 
possible modifications. I will then 

re-analyse an existing data set to 
illustrate how the method can be 
implemented. Finally, I discuss 
other possible approaches to solve 
the same problem. 

Background 

Ridley (1983) was the first to 
suggest a phylogenetic-comparative 
method for the analysis of two 
binary variables. It consists, essen-
tially, of tabulating changes in both 
characters in a 2 × 2 contingency 
table, and using a χ2 test or Fisher’s 
exact test to establish whether chan-
ges (or states) in one character are 
associated with changes (or states) 
in the other. Figure 1 exemplifies 
this approach with two simple 
phylogenetic trees, in which branch 
colour symbolises the presence of 
the first character, and black squares 
the evolution of the second charac-
ter. Both tree topologies result in 
the same contingency table (viz.,  
((4, 0), (0, 2))) and, consequently, 
test results (χ2 = 2.34, p = 0.063; 
Fisher’s exact test, p = 0.067). 

Maddison (1990) developed an 
alternative method which allows to 
pose more specific questions of the 
kind: are gains or losses of one char-
acter concentrated in certain parts 
of a phylogenetic tree? Here, “cer-
tain parts of a tree” refers to 
branches that are in one or the other 
character state of a second binary 
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Illustration (© 2004, Katja Sandvik): 
The upper levels of the Barents Sea food web, or A kittiwake and its prey 
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Dependence of adult survival on climate 
in five species of North Atlantic seabirds 
 revealed by capture-recapture analysis 

Hanno Sandvik, Kjell Einar Erikstad, 
Robert T. Barrett and Nigel G. Yoccoz 

Abstract   In long-lived species, annual survival is the single most 
important life-history trait. Better knowledge of the effects of non-
catastrophic climate variation on the adult survival of long-lived 
seabirds is therefore important. However, documentation of such 
effects is still rare. Using capture-mark-recapture methodology, we 
modelled the annual survival rates of five species of seabirds, the 
common guillemot (Uria aalge), Brünnich’s guillemot (Uria lomvia), 
razorbill (Alca torda), Atlantic puffin (Fratercula arctica) and black-
legged kittiwake (Rissa tridactyla). The data span fourteen years of 
observation at the species’ breeding colony on Hornøya, off Nor-
thern Norway in the western Barents Sea. The estimated survival 
rates are higher and less variable than most estimates for the same 
species from other colonies.  
The effect of different environmental variables on seabird survival 
was investigated, including the North Atlantic Oscillation (NAO) 
index, sea surface temperatures (SST), and abundance indices of 
important prey species. In most of the species, models incorporating 
climatological variables were considerably better supported than 
models with constant survival, time-dependent survival or prey 
effects. SSTs tended to explain more of the variability in seabird 
survival than did the NAO. Nevertheless, the evidence suggests that 
it is not meteorological parameters per se that cause seabird morta-
lity, but indirect effects, possibly mediated by the food chain. This 
conclusion rests on the observations that most NAO effects are 
lagged, and that survival rates decreased with increasing SSTs. The 
importance of prey availability was evident in some of the species, 
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however prey abundance was generally a poor predictor of survival. 
This may partly be because the estimates of fish stocks available are 
not representative of the prey availability in the wintering areas. 

Keywords   Adult mortality, Alcidae, Barents Sea, North Atlantic 
Oscillation, Fish stock biomass, Sea surface temperature 

H. Sandvik (�), K.E. Erikstad and N.G. Yoccoz, Dept of Biology, Univ. of Tromsø, 9037 
Tromsø, Norway; and Norwegian Institute for Nature Research (NINA), Division of Arctic 
Ecology, Polar Environmental Centre, 9296 Tromsø, Norway. – R.T. Barrett, Tromsø 
University Museum, Univ. of Tromsø, 9037 Tromsø, Norway. – E-mail: hanno@evol.no. 

Many aspects of seabird life history 
respond to climatic conditions (Ain-
ley and Divoky 2001; Schreiber 
2002; Durant et al. 2004). The most 
dramatic examples in this regard 
come from the effect of the El 
Niño-Southern Oscillation, which 
regularly causes total breeding fail-
ure and high mortality (e.g., Barber 
and Chavez 1983; Schreiber and 
Schreiber 1986; Duffy 1990; Wilson 
1991; Chastel et al. 1993). The effect 
of the El Niño-Southern Oscillation 
is most pronounced in the south-
eastern Pacific Ocean, however 
other parts of the Pacific (Ainley 
1990; Ainley et al. 1994), the South-
ern Ocean (Guinet et al. 1998) and 
even the Indian Ocean (Barbraud 
and Weimerskirch 2003; Crawford 
et al. 2003) and Southern Atlantic 
(La Cock 1986; Duffy 1990) are 
affected. Other, less pronounced 
climatic oscillations are known from 
other oceanic regions, the most 
well-studied of which is the North 

Atlantic Oscillation (NAO; e.g., 
Hurrell 1995; Hurrell et al. 2003). 
However, those oscillations do not 
entail phenomena as catastrophic as 
El Niño years. It may be partially 
for this reason, that documentation 
of climatic variability on seabird life 
histories is rarer in the North 
Atlantic.  

Some recent reviews have attemp-
ted at summarising the effects of the 
NAO on life-history traits of Atlan-
tic seabirds (Reid et al. 1999; Durant 
et al. 2004). However, no clear pat-
tern has emerged. Several life-his-
tory traits have been shown to vary 
with climatic conditions also in the 
North Atlantic (Montevecchi and 
Myers 1997; Barrett 2001a; Durant 
et al. 2003), however adult survival 
has not been among these. Aside 
from the South Pacific and South-
ern (Indian) Ocean (Barbraud et al. 
2000; Barbraud and Weimerskirch 
2001, 2003; Jenouvrier et al. 2003), 
responses of seabird adult survival 
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Illustration (© 1996, Hanno Sandvik): 
The ratherbill, definitely one of the coolest representative of the seabird guild 
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Seabird life histories and climatic oscillations: 
a phylogenetic-comparative time series analysis 

of North Atlantic seabirds 

Hanno Sandvik and Kjell Einar Erikstad 

Abstract   In the light of the predicted changes in climate as a con-
sequence of global warming, it is a major concern how animal spe-
cies will respond to the altered meteorological and oceanographic 
conditions. Seabirds constitute a diverse group of marine top preda-
tors which have relatively low fecundity and high annual survival 
rates. This makes them especially vulnerable because even small 
changes in survival will have huge effects on the life time reproduc-
tive success of individuals, and on the prospects of whole popula-
tions and, ultimately, species. In order to predict effects of climate 
change, it is a necessary precondition to first understand responses 
to naturally occurring climatic fluctuations. While the effects of the 
El Niño-Southern Oscillation have received much attention in the 
past, the responses of seabirds in oceans affected by other climatic 
systems is still little understood. We analyse several hundred pre-
viously published time series of seabird population sizes, offspring 
production and adult survival rates in the North Atlantic in order to 
detect climatic signals in this data base. Using the correlation of 
these parameters with the North Atlantic Oscillation (NAO) as a 
measure of responsiveness to climatic variability, we find widespread 
effects of climate on all parameters considered. As our analyses are 
phylogenetic-comparative, we are able to search for patterns across 
species, which may be used in predicting especially vulnerable spe-
cies. Our expectation was that life-history characteristics of the spe-
cies should have explanatory value for climatic responsiveness. 
Based on the elasticity of different life-history traits it is expected 
that the longer-lived a seabirds is, the most reluctant it is in respon-
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ding to climatic variability. We are able to corroborate this for the 
responsiveness in adult survival and in chick production, but not in 
population sizes. 

Keywords   Adult survival, Breeding success, Climate response, 
NAO, North Atlantic Oscillation, Population size 

H. Sandvik, K.E. Erikstad, Dept of Biology, Univ. of Tromsø, 9037 Tromsø, Norway; and 
Norwegian Institute for Nature Research (NINA). E-mail: hanno@evol.no. 

 
Global change is predicted to change 
both the mean and variance of many 
climatological and oceanographic 
parameters (Trenberth 2001b; Karl 
and Trenberth 2003) which are rele-
vant to animal populations (Aebi-
scher et al. 1990; Ainley and Divoky 
2001; Walther et al. 2002). In several 
areas, the signal is already apparent, 
as shown by increases in water tem-
perature in the Southern Ocean 
(Gille 2002) or the North Atlantic 
(Levitus et al. 2000). Climatic and 
oceanographic systems are highly 
complex, not to speak of their inter-
action with biota, both on the scale 
of particular species (Kitaysky and 
Golubova 2000) and of ecological 
communities (Hjermann et al. 2004). 
The understanding of the naturally 
occurring fluctuations and their 
influence on animal populations is a 
crucial step towards an understand-
ing of how global change will affect 
different species. 

Of those naturally occurring large-
scale patterns, the El Niño-Southern 

Oscillation (ENSO; Philander 1990; 
Trenberth 1997, 2001a) has received 
most attention, mainly because the 
effects it executes on marine animals 
are so dramatic (Barber and Chavez 
1983; Schreiber and Schreiber 1984; 
Ainley et al. 1988). Recently, 
however, other climatic oscillations 
have gained increasing attention 
(Stenseth et al. 2003), among which 
the North Atlantic Oscillation (NAO; 
Lamb and Peppler 1987; Hurrell et 
al. 2001) may be the one most 
intensely studied (Hurrell et al. 
2003b). While earlier research has 
focused mainly on vascular plants, 
terrestrial vertebrates and marine and 
limnic invertebrates (see reviews by 
Ottersen et al. 2001; Stenseth et al. 
2002), the focus has currently been 
shifting to marine vertebrates. Many 
of the results, summarised by Hurrell 
et al. (2003) and Stenseth et al. 
(2004), have important direct and 
indirect implications for population 
dynamics of seabirds. A fine exam-
ple by Hjermann et al. (2004) illus-
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